Brice Videau (LIG - NANOSIM)

April 24, 2012

OpenCL Basic Management Writing Kernels BigDFT Conclusions and perspectives

Needs in computing resources are infinite

Benefits for physicists and
chemists

More computing power means :

@ Bigger systems,

@ Fewer approximations,

@ Improved accuracy. CEA'’s hybrid cluster

Numerical experimentation. Titane, built by Bull

OpenCL: Programming Heterogeneous Architectures |3 / 45

OpenCL Basic Management Writing Kernels BigDFT Conclusions and perspectives

Current and future architectures

3 trends are seen in current calculators :

Bigger systems

@ Number of nodes in clusters

and grids increase.
More powerful components

@ Number of processors in | dF

supercomputer increase. (L= R R T,

@ Increased number of

Green Computing processors and cores,
@ Low power components, @ Specialized co-processors :
GPU, CELL...

@ High efficiency,

@ Huge Number of
components.

OpenCL: Programming Heterogeneous Architectures

4/ a5

OpenCL Basic Management Writing Kernels BigDFT Conclusions and perspectives

Exploiting those architectures

@ Middlewares are available to program those machines.

@ Each middleware covers a range of usage.

Some examples
Distributed machines :
e MPI, KAAPI, CHARM...
Multicore architectures :
@ MPI, OpenMP, ompss, StarPU, OpenCL...
GPU :
@ OpenCL, NVIDIA Cuda, ATI Streams...

OpenCL: Programming Heterogeneous Architectures |5 / 45

OpenCL Basic Management Writing Kernels BigDFT Conclusions and perspectives

Talk Outline

e OpenCL : a Standard for Parallel Computing
© Life and Death of OpenCL in a Program

@ Writing Kernels

© BigDFT

@ Conclusions and perspectives

OpenCL: Programming Heterogeneous Architectures |6 / 45

Introduction OpenCL Basic Management Writing Kernels BigDFT Conclusions and perspectives

OpenCL Architecture Model

Host-Devices model

@ 1 host and several devices. Devices
@ Devices are connected to the host.]
Host Devices

@ Host issues commands to the

devices.
@ Data transport is done via memory Devices

Commands
copy.

Several devices support OpenCL
@ NVIDIA for GPU and in the future for Tegra.
@ AMD and Intel for CPUs and GPUs and MIC?
@ IBM CELL processor.
@ ARM GPUs (Mali) + CPUs

OpenCL: Programming Heterogeneous Architectures |8 / 45

Introduction OpenCL Basic Management Writing Kernels BigDFT Conclusions and perspectives

Context and Queues

Contexts aggregate resources, programs and devices belonging to a
common platform (ie NVIDIA, or ATI).

Host and devices communicate via buffers defined in a context.

@ Commands are sent to devices using command queues.

@ Commands are called kernels.

Command queues
@ Can be synchronous or asynchronous.
@ Can be event driven.

@ Several queues can point to the same device, allowing concurrent
execution.

OpenCL: Programming Heterogeneous Architectures |9 / 45

Introduction OpenCL Basic Management

Writing Kernels

BigDFT

Conclusions and perspectives

OpenCL Processing Model

Work Work
item 1 item 2
Work Work
item n—1 item n

Compute Unit 1

1

1

! Work Work
: item 1 item 2
1

P [
1

: Work Work
\ item n—1 item n
1

1

Compute Unit m

Compute Device

@ Kernels are split into uni, two or three-dimensional ranges called

work groups.

@ Work groups are mapped to compute units.

@ Individual item are processed by work items.

OpenCL: Programming Heterogeneous Architectures |10 / 45

Introduction OpenCL Basic Management

Writing Kernels BigDFT Conclusions and perspectives

OpenCL Memory Model

4 different memory space defined on an OpenCL device :

@ Global memory :
corresponds to the device
RAM, input data are
stored there.

@ Constant memory :
cached global memory.

@ Local memory : high
speed memory shared
among work items of a
compute unit.

@ Private memory :
registers of a work item.

te Private
emory Memory

Private Private
Memory Memory

Workltem 1 Worklterm M Workltem 1 Workltem M

Compute Unit 1 Compute UnitN

Local Memory | Local Memory
Global/ ConstantMemory Data Cache

Compute Device

Global Memery

Compute Device Memory

OpenCL: Programming Heterogeneous Architectures

11/ 45

Introduction OpenCL Writing Kernels BigDFT Conclusions and perspectives

Life and Death of OpenCL in a Program

The Host Side of OpenCL

OpenCL: Programming Heterogeneous Architectures |12 / 45

Introduction OpenCL Writing Kernels BigDFT Conclusions and perspectives

General Workflow

Select desired »| Select desired »| Create associated
platform devices Context
Y
Send data to devices - Create command queues | Compile or load kernels
using command queues associated do devices on the devices
Y

Send commands to devices »| Get data from devices »| Release every
using command queues using command queues resources used

1

OpenCL: Programming Heterogeneous Architectures |13 / 45

Introduction OpenCL Basic Management Writing Kernels BigDFT Conclusions and perspectives

Platform Selection

In a near future every platform will support OpenCL, but the user
may not be interested in all of them : select an appropriate platform

Get Platforms

1 #include <CL/cl.h>

2 cl_uint num platforms;

3 cl(_;etPIatforrFIDs(NULL, NULL, &num platforms);

4 cl_platform_id splatforms = malloc(sizeof (cl_platform_id) * num_platforms);
5 claetPIatfor_mle(num platforms, platforms , NTJLL); - -
6 /x...x/ -

7 for(int i=0; i<num platforms; i++){

8 VA YA -

9 clGetPlatformlInfo (platforms[i], CL PLATFORM VENDOR, ...);

10 [x ... %/ - -

11}

OpenCL: Programming Heterogeneous Architectures |14 / 45

Introduction OpenCL Basic Management Writing Kernels BigDFT Conclusions and perspectives

Device Selection

Several device from the same vendor is also common : one device
for the screen and one device for computations

Get Devices

1 #include <CL/cl.h>

2 cl_uint num devices;

3 chetDevicelﬁs(platform , CL DEVICE TYPE ALL, NULL, NULL, &num devices);
4 cl_device_id xdevices = malloc(sizeof(cl_device id) * num devices);

5 clGetDevicelDs(platform, CL DEVICE TYPE ALL, num devices . devices , NULL);
6 /x...x/ - - - -

7 for(int i=0; i<num devices; i++){

8 VA YA -

9 clGetDevicelnfo(devices[i], CL DEVICE NAME , ...);

10 J* ... x/ - -

11}

OpenCL: Programming Heterogeneous Architectures |15 / 45

Introduction OpenCL Basic Management Writing Kernels BigDFT Conclusions and perspectives

Context Creation

Context gather devices from the same platform. Those devices will
be able to share resources.

Create Context

1 cl_context_properties properties|[] =
2 { CL_CONTEXT_PLATFORM, (cl_context_properties)platform_id, 0 };
3 cl_device_id devices[] = {device_id_1, device_ id_2};
4 cl_context context =
5 clCreateContext(properties , 2, devices, NULL, NULL, NULL);
A shortcut exists, skipping device selection :
Create Context from Type
1 cl_context_properties properties[] =
2 { CL CONTEXT PLATFORM, (cl_context_ properties)platform id, 0 };
3 cl_context context =
4 clCreateContextFromType(properties , CL_DEVICE_TYPE_GPU , NULL, NULL, NULL);

OpenCL: Programming Heterogeneous Architectures |16 / 45

Introduction OpenCL Basic Management Writing Kernels BigDFT Conclusions and perspectives

Building Program from Source

Once the context is created, the program is to be built (or loaded
from binary).

Building Program

/* strings is an array of string count NULL terminated strings x/
cl_program program = -

clCreateProgramWithSource(context , string count, strings , NULL, NULL);
/+ if device list is NULL, program is built
« for all available devices in the context x/
clBuildProgram (program, num devices, device list, options, NULL, NULL);
cl_kernel kernel = CICreateKiernel(program, Wkerneliname", NULL);

NOoOOEWN -

Kernels are extracted from the built program using their name.

OpenCL: Programming Heterogeneous Architectures |17 / 45

Introduction OpenCL Basic Management Writing Kernels BigDFT Conclusions and perspectives

-

Creating Command Queues

A command queue is used to send commands to a device. They
have to be associated with a device.

Creating Command Queues

cl_command_queue queue =
clCreateCommandQueue(context, devices[chosen_ device], 0, NULL);

Options can be specified instead of 0,

CL_QUEUE_OUT_OF ORDER_EXEC MODE_ ENABLE
allows for out of order execution for instance.

OpenCL: Programming Heterogeneous Architectures

18 / 45

Introduction OpenCL Writing Kernels
Using OpenCL

BigDFT

Using OpenCL is (hopefully) easier than setting it up.

Create buffers to »| Send data to devices
store data on devices using command queues
A
\i

Send commands to devices
using command queues

A

Get data from devices
using command queues

OpenCL: Programming Heterogeneous Architectures

Conclusions and perspectives

Introduction OpenCL Writing Kernels BigDFT Conclusions and perspectives
Buffer Creation

In OpenCL buffers creation and deletion are explicitly managed. As
can be noted buffers are tied to a context and not a particular
command queue. The implementation is free to transfer buffers
from devices to host memory or to another device.

Creating Simple Buffers

1 cl_mem read buffer =

2 c|Create§uffer(c0ntext, CL MEM READ ONLY, buffer size, NULL, NULL);
3 c_mem write buffer = - - - -

4 chreateBTlffer(context, CL_MEM_WRITE_ONLY, buffer size, NULL, NULL);

OpenCL: Programming Heterogeneous Architectures |20 / 45

Introduction

OONOOOEWNM

Basic Management Writing Kernels

OpenCL BigDFT Conclusions and perspectives

Pinned Buffer Creation

Pinned buffer creation can offer premium performances. Here is a
code sample that can be used on NVIDIA devices. The finals
pointers obtained can be used to transfer data between the host
and the device.

Creating Pinned Simple Buffers

cl_mem pinned_ read_ buffer =
clCreateBuffer(context, CL_MEM_ALLOC_HOST_ PTR | CL_MEM_READ_ONLY,

buffer_size,

cl_mem pinned write buffer =

c|CreateBquer(cc7ntext s

buffer size,

unsigned char xdata in =

clEnqueueMapBuffer (queue,

buffer

unsigned char xdata out =
clEnqueueMapBuffer (queue,

buffer

NULL, NULL);

CL_MEM_ALLOC HOST PTR | CL_MEM_WRITE ONLY,

NULL, NULL);

pinned read buffer, CL TRUE, CL MAP_ WRITE, 0,
size , 0, NULL, NULL, NULL);

pinned write buffer, CL TRUE, CL MAP READ, 0,
size, 0, NULL, NULL, NULL);

OpenCL: Programming Heterogeneous Architectures | 21

/ 45

Introduction OpenCL Basic Management Writing Kernels BigDFT Conclusions and perspectives

OO R WN -

Transferring Data

The implementation is free to move buffers in memory. But
nonetheless, memory is often kept on the device associated to the
command queue used to transfer the data.

Data Transfer

clEnqueueWriteBuffer (queue, read buffer, CL_TRUE, 0,
buffer size , data_in, 0, NULL, NULL);
/* Processing that reads read_ buffer and writes write_buffer x/
Ry
clEnqueueReadBuffer(queue, write buffer, CL_TRUE, 0,
buffer size, data_out, 0, NULL, NULL);

OpenCL: Programming Heterogeneous Architectures

22 /45

Introduction OpenCL Writing Kernels BigDFT Conclusions and perspectives

OCONOOOEWNH

Performing Calculations

Once data is transfered, kernels are used to perform calculations.

Kernel Usage

/+ Place kernel parameters in the kernel structure. x/
clSetKernelArg (kernel , 0,sizeof (data size), (voidx*)&data size);
clSetKernelArg (kernel , 1,sizeof(read buffer), (void*)&read buffer);
clSetKernelArg (kernel , 2,sizeof (write buffer), (void+)&write buffer);
/* Enqueue a 1 dimensional kernel with a local size of 32 x/
size _t localWorkSize[] = { 32 };
size_t globalWorkSize[] = { shrRoundUp(32, data size) };
cIEnaueueNDRangeKernel(queue, kernel , 1, NULL, —

globalWorkSize , localWorkSize , 0, NULL, NULL);

OpenCL: Programming Heterogeneous Architectures

23 / 45

Introduction OpenCL Basic Management Writing Kernels BigDFT Conclusions and perspectives

Event Management

Almost all functions presented end with :

1 ..., 0, NULL, NULL);

These 3 arguments are used for event management, and thus
asynchronous queue handling. Functions can wait for a number of
events, and can generate 1 event.

event_t event_ list[] = {eventl, event2};

event_t event;_

clEnqueueReadBuffer(queue, write_buffer, CL_FALSE, 0,
buffer_ size, data_out, 2, event_list, &event);

BWN =

Previous buffer read waits for 2 events and generate a third that
will happen when the read is completed.

OpenCL: Programming Heterogeneous Architectures |24 / 45

Introduction OpenCL Writing Kernels BigDFT Conclusions and perspectives

Release Resources

OpenCL uses reference counts to manage memory. In order to exit
cleanly from an OpenCL program all allocated resources have to be
freed :

buffers (c1ReleaseMemObject)

@ events (clReleaseEvent)

o kernel (c1Releasekernel)

@ programs (clReleaseProgram)

@ queues (clReleaseCommandQueue)
@ context (clReleaseContext)

@ etc...

OpenCL: Programming Heterogeneous Architectures |25 / 45

.~ OpenCL: Programming Heterogeneous Architectures |26 / 45

Introduction OpenCL Basic Management

Writing Kernels BigDFT Conclusions and perspectives

Recall : OpenCL Memory Model

4 different memory space defined on an OpenCL device :

@ Global memory :
corresponds to the device
RAM, input data are
stored there.

@ Constant memory :
cached global memory.

@ Local memory : high
speed memory shared
among work items of a
compute unit.

@ Private memory :
registers of a work item.

te Private
emory Memory

Private Private
Memory Memory

Workltem 1 Worklterm M Workltem 1 Workltem M

Compute Unit 1 Compute UnitN

Local Memory | Local Memory
Global/ ConstantMemory Data Cache

Compute Device

Global Memery

Compute Device Memory

OpenCL: Programming Heterogeneous Architectures

27 / 45

Introduction OpenCL Basic Management BigDFT Conclusions and perspectives
OpenCL Language : a Subset of C

Kernels are written using a C-like language

@ Recursion is prohibited
@ Helper functions are defined

Barriers

Work item indexes
Atomic operations
Vector operations

@ New keywords :

@ __kernel
e __global, __local, __constant, __private
o __read_only, __write_only, __read_write

OpenCL: Programming Heterogeneous Architectures |28 / 45

g

Introduction OpenCL Basic Management
Example :
N
Ne Ne
N[00 01 ‘ ‘
(1,0) INPUT | G5

BigDFT

Ne

Conclusions and perspectives

Unidimensional Convolutions

(0,0)

(1,0)

(0,1)

DUT

PU

(i.9)

One unidimensional convolution with transposition, simple but not
too much. Real world code used in BigDFT an electronic structure

calculation program.

OpenCL: Programming Heterogeneous Architectures

Introduction OpenCL Basic Management Writing Kernels BigDFT Conclusions and perspectives

OpenCL memory management

Example using a 4*4 block processing a filter of length 5.

00]10]20]30

0111 |21]31

0212]22]32 0.2
0313]23]33 1.2
00]10]20]30 22123
01 L1 |21]31 32

0212]22]32

0313]23]33

1 work item processes one element of the final matrix.

OpenCL: Programming Heterogeneous Architectures

30 /45

Introduction OpenCL Basic Management Writing Kernels BigDFT Conclusions and perspectives

Benefits from this approach

@ 3D convolutions can be expressed as a succession of 3 1D
convolution/transposition.

@ Memory access are coalesced while reading input matrix and writing
output matrix.

@ Bank conflicts are almost avoided by padding the buffer to the
number of bank +1.

@ Maps easily to current architectures.
@ Extends to more complex convolutions found in BigDFT.

@ Almost every convolution in BigDFT have been ported, including
free boundary and semi-periodic boundary.

OpenCL: Programming Heterogeneous Architectures |31 / 45

Introduction OpenCL Basic Management Writing Kernels BigDFT Conclusions and perspectives

-

HOWOWONOORWNK

Kernel Declaration

Kernel Declaration

/* Activate double precision support x/
#pragma OPENCL EXTENSION cl khr fp64: enable
#define FILT W 16 - -
#define WG S 16
kernel void
Tattribute ((reqd work group size(WG _S,WG S,1))
magicfilterTdKernel “d(uint n, uint ndat, -

~ _ _global const double xpsi,

global double *out){

//padded local buffer size : 33x16
_ _local double tmp[WG_S+(WG_S+FILT_W+1)];

@ Works on double precision floats
@ Kernel expects work group size of 16 x 16
@ n and ndat are in __local memory

@ tmpl is a storage buffer in local memory, shared among work items

OpenCL: Programming Heterogeneous Architectures

32 /45

Introduction OpenCL Basic Management Writing Kernels BigDFT Conclusions and perspectives
Work with Indexes

Get Indexes and Load Data

1 //get our position in the local work group

2 const size_t ig = get_global_id (0);

3 const size_t jg = get:global:id(l);

4 //get our position in the result matrix

5 const size_t i = get local id(0);

6 const size_t j = get local id(1);

7 //transpose indexes in the work group in order to read transposed data

8 ptrdiff_t igt = ig — i + j — FILT W/2;

9 ptrdiff_t jgt = jg — j + i;: -

10 //if we are on the outside, select a border element to load, wrapping around

11 //we will be loading 2 elements each
12 if (igt <O

13 tmp[i * (WG_S+FILT_W+1) + j] = psi[jgt + (n + igt) * ndat];
14 else
15 tmp[i * (WG_S+FILT_W+1) + j] = psi[jgt + igt * ndat];

16 igt += FILT_W;

17 if (igt >=n)

18 tmp[i *= (WG S+FILT W+1) + j + FILT W] = psi[jgt + (igt — n) * ndat];
19 else\n\ - - -

20 tmp[i * (WG_S+FILT_W+1) + j + FILT_W] = psi[jgt + igt % ndat];

OpenCL: Programming Heterogeneous Architectures |33 / 45

Introduction OpenCL Basic Management BigDFT Conclusions and perspectives
Compute Convolution and Write Output

Performing Computations

//initialize result

double tt = 0.0;

//rest position in the buffer to first element involved in the convolution
tmp += j2 (WG SHFILT W+1) + i2;

//wait for buffer to be full

barrier (CLK_LOCAL_MEM_FENCE);

//apply filter

tt 4+= xtmp4++ * FILTO;
10 tt 4= xtmp++ x FILTI1;
11 /* ... x/

12 tt += xtmp++ x FILT15;
13 //store the result

14 out[(jgxntig)]l=tt;

15 }:

OCONOOEWNKH

OpenCL: Programming Heterogeneous Architectures |34 / 45

~ OpenCL: Programming Heterogeneous Architectures | 35 / 45

Introduction OpenCL Basic Management Writing Kernels BigDFT Conclusions and perspectives

Motivations

Part of BigDFT was already ported to GPU architectures using
CUDA, why a new port?

@ Only part of the program was ported.

@ OpenCL can target several platforms while CUDA can't.

@ OpenCL is a standard, while CUDA is a vendor provided solution.
@ This time most of BigDFT is expected to run on GPU.

@ Code ported is relatively simple and well suited to GPU, thus the
performance loss is hoped to be minimal.

OpenCL: Programming Heterogeneous Architectures |36 / 45

Introduction OpenCL Basic Management Writing Kernels BigDFT Conclusions and perspectives

Objectives

@ Most of BigDFT operations can be expressed as unidimensional
convolutions.

@ There are several dozens convolutions to implement.

@ Convolutions of BigDFT share common traits.

Objectives
@ Find a common parallelization technique fitting most convolutions.

@ Be as efficient as CUDA.

OpenCL: Programming Heterogeneous Architectures |37 / 45

Introduction OpenCL Basic Management Writing Kernels BigDFT Conclusions and perspectives

Test System Setup

GPU 2:

@ Tesla C2070 (Fermi)

@ 6 GB of RAM

@ Driver version : 260.14
GPU 2:

@ Radeon HD6970

@ 2 GB of RAM

@ Driver version : 11.6

OpenCL: Programming Heterogeneous Architectures |38 / 45

Introduction OpenCL Basic Management Writing Kernels BigDFT Conclusions and perspectives

Test System Setup

Host :
@ Lenovo D20
@ 1 Xeon 5550 @ 2.83 GHz (4 Nehalem cores)
@ 8 GB of RAM

Linux 2.6.38-11 x86_ 64

icc 11.1

OpenCL: Programming Heterogeneous Architectures |39 / 45

Introduction OpenCL

Basic Management

Writing Kernels

Comparison CPU,Fermi,HD6970

Conclusions and perspectives

Performances of CPU vs NVIDIA vs AMD
180
CPU ——
160 NVIDIA -
AMD
7
& L
o
P}
w
o
40 H
20
0 T T T T T T T T
E E z E z z Z 2 2
& & & & 3 3 B oz 32
< & §& g s 5 % 3 3
T % & 3% !
- o \o . ‘g
O s
< z ES 2
@ =

Kernels

OpenCL: Programming Heterogeneous Architectures

40 / 45

Introduction OpenCL

Basic Management

Writing Kernels

Comparison CPU,Fermi,HD6970

Conclusions and perspectives
70

Performances of CPU vs NVIDIA vs AMD

CPU ——

Ratio to CPU

] T T T T T T T T T T
7) 9] v c Q
ES 3 S S B 3 E 3 3 2 3 E
g g g g -8 3 Z Z ES Z 2 2
Y S S S 3 ° P () % % 2 3
% % 3 3 = @ % % e 2 3
L @ Y o ‘g ® o
o \ v \a % @
e % % 5 3z 7
) 2 ES Z =
u& =

Kernels

OpenCL: Programming Heterogeneous Architectures

40 / 45

Introduction OpenCL Basic Management Writing Kernels FT Conclusions and perspectives

Comparison CUDA, OpenCL, CPU

Badiane, X5550 + Fermi C2070 , ZnO 64 at.: CPU vs. Hybrid

100
4 10
80
° 48
[]
60 ® o
8 ° 1% 3
<] [}
& &
40
- ® Speedup
20 —3 Other
——3 CPU
s Conv
LinAlg
0 ExXxx Comms

OpenCL: Programming Heterogeneous Architectures |41 / 45

Introduction OpenCL Basic Management Writing Kernels BigDFT Conclusions and perspectives

Hybrid ATl + NVIDIA

Tesla C2070 + Radeon HD 6970

MPI+NVIDIA/AMD Execution Time (s) | Speedup
1 6020 1
4 1660 3.6
1 + NVIDIA 300 20
4 + NVIDIA 160 38
1+ AMD 347 17
4 + AMD 197 30
(4 + NV) + (4 + AMD) 109 55

Table: Performance results for different configuration of BigDFT, using
MPI + GPUs

OpenCL: Programming Heterogeneous Architectures |42 / 45

Introduction OpenCL Basic Management Writing Kernels BigDFT (Conclusions and perspectives)

Conclusions

OpenCL
@ OpenCL proved easy to use.
@ Performance is on-par with previous CUDA implementation.

@ Kernels have been shown to run on other architectures : ATI and
CPU.

BigDFT
@ Full port of BigDFT convolutions on OpenCL.
@ Part of the code was rewritten during this work.

@ Complexity reduced compared to the CUDA support.

OpenCL: Programming Heterogeneous Architectures |43 / 45

Introduction OpenCL Basic Management Writing Kernels BigDFT (Conclusions and perspectives)

Perspectives

OpenCL
@ Some OpenCL implementations are still recent and buggy.
@ Best way to do multi-GPU, GPU+OpenCL CPU?
@ Optimizing kernels for multiple devices?

@ Automated kernel generation.

OpenCL: Programming Heterogeneous Architectures |44 / 45

Thanks for your attention.

.~ OpenCL: Programming Heterogeneous Architectures | 45 / 45

	Introduction
	Context
	General problematic

	OpenCL: a Standard for Parallel Computing
	OpenCL Architecture Model
	OpenCL Device Model

	Life and Death of OpenCL in a Program
	Initialization
	Using OpenCL
	Event Management
	Release Resources

	Writing Kernels
	OpenCL Language
	Porting Unidimensional Convolutions to OpenCL

	BigDFT
	Motivations and objectives
	Performances Validation

	Conclusions and perspectives

