
Introduction OpenCL Basic Management Writing Kernels BigDFT Conclusions and perspectives

OpenCL: Programming Heterogeneous

Architectures

Porting BigDFT to OpenCL

Brice Videau (LIG - NANOSIM)

April 24, 2012

1 / 45OpenCL: Programming Heterogeneous Architectures

Introduction OpenCL Basic Management Writing Kernels BigDFT Conclusions and perspectives

Introduction

2 / 45OpenCL: Programming Heterogeneous Architectures

Introduction OpenCL Basic Management Writing Kernels BigDFT Conclusions and perspectives

Needs in computing resources are in�nite

Bene�ts for physicists and

chemists

More computing power means :

Bigger systems,

Fewer approximations,

Improved accuracy.

Numerical experimentation.

CEA's hybrid cluster
Titane, built by Bull

3 / 45OpenCL: Programming Heterogeneous Architectures

Introduction OpenCL Basic Management Writing Kernels BigDFT Conclusions and perspectives

Current and future architectures

3 trends are seen in current calculators :

Bigger systems

Number of nodes in clusters
and grids increase.

Number of processors in
supercomputer increase.

Green Computing

Low power components,

High e�ciency,

Huge Number of
components.

More powerful components

Increased frequency,

Increased number of
processors and cores,

Specialized co-processors :
GPU, CELL...

4 / 45OpenCL: Programming Heterogeneous Architectures

Introduction OpenCL Basic Management Writing Kernels BigDFT Conclusions and perspectives

Exploiting those architectures

Middlewares are available to program those machines.

Each middleware covers a range of usage.

Some examples

Distributed machines :

MPI, KAAPI, CHARM...

Multicore architectures :

MPI, OpenMP, ompss, StarPU, OpenCL...

GPU :

OpenCL, NVIDIA Cuda, ATI Streams...

5 / 45OpenCL: Programming Heterogeneous Architectures

Introduction OpenCL Basic Management Writing Kernels BigDFT Conclusions and perspectives

Talk Outline

2 OpenCL : a Standard for Parallel Computing

3 Life and Death of OpenCL in a Program

4 Writing Kernels

5 BigDFT

6 Conclusions and perspectives

6 / 45OpenCL: Programming Heterogeneous Architectures

Introduction OpenCL Basic Management Writing Kernels BigDFT Conclusions and perspectives

OpenCL : a Standard for Parallel Computing

7 / 45OpenCL: Programming Heterogeneous Architectures

Introduction OpenCL Basic Management Writing Kernels BigDFT Conclusions and perspectives

OpenCL Architecture Model

Host-Devices model

1 host and several devices.

Devices are connected to the host.

Host issues commands to the
devices.

Data transport is done via memory
copy.

Host

Devices

Devices

Devices

Commands

Several devices support OpenCL

NVIDIA for GPU and in the future for Tegra.

AMD and Intel for CPUs and GPUs and MIC ?

IBM CELL processor.

ARM GPUs (Mali) + CPUs

8 / 45OpenCL: Programming Heterogeneous Architectures

Introduction OpenCL Basic Management Writing Kernels BigDFT Conclusions and perspectives

Context and Queues

Contexts aggregate resources, programs and devices belonging to a
common platform (ie NVIDIA, or ATI).

Host and devices communicate via bu�ers de�ned in a context.

Commands are sent to devices using command queues.

Commands are called kernels.

Command queues

Can be synchronous or asynchronous.

Can be event driven.

Several queues can point to the same device, allowing concurrent
execution.

9 / 45OpenCL: Programming Heterogeneous Architectures

Introduction OpenCL Basic Management Writing Kernels BigDFT Conclusions and perspectives

OpenCL Processing Model

Work
item 1

Work
item 1

Compute Unit 1

Compute Device

item 2
Work

Work
item n

Work
item n−1

item 2
Work

Work
item n

Work
item n−1

Compute Unit m

Kernels are split into uni, two or three-dimensional ranges called
work groups.

Work groups are mapped to compute units.

Individual item are processed by work items.

10 / 45OpenCL: Programming Heterogeneous Architectures

Introduction OpenCL Basic Management Writing Kernels BigDFT Conclusions and perspectives

OpenCL Memory Model

4 di�erent memory space de�ned on an OpenCL device :

Global memory :
corresponds to the device
RAM, input data are
stored there.

Constant memory :
cached global memory.

Local memory : high
speed memory shared
among work items of a
compute unit.

Private memory :
registers of a work item.

11 / 45OpenCL: Programming Heterogeneous Architectures

Introduction OpenCL Basic Management Writing Kernels BigDFT Conclusions and perspectives

Life and Death of OpenCL in a Program

The Host Side of OpenCL

12 / 45OpenCL: Programming Heterogeneous Architectures

Introduction OpenCL Basic Management Writing Kernels BigDFT Conclusions and perspectives

General Work�ow

Select desired

platform

Select desired

devices Context

Create associated

Create command queues

associated do devices

Send data to devices

using command queues

Get data from devices

using command queues resources used

Release everySend commands to devices

using command queues

Compile or load kernels

on the devices

13 / 45OpenCL: Programming Heterogeneous Architectures

Introduction OpenCL Basic Management Writing Kernels BigDFT Conclusions and perspectives

Platform Selection

In a near future every platform will support OpenCL, but the user
may not be interested in all of them : select an appropriate platform

Get Platforms

1 #i n c l u d e <CL/ c l . h>
2 c l_u i n t num_platforms ;
3 c lGe tP l a t f o rm IDs (NULL , NULL , &num_platforms) ;
4 c l_p l a t f o rm_ id ∗ p l a t f o rm s = ma l l o c (s i z e o f (c l_p l a t f o rm_ id) ∗ num_platforms) ;
5 c lGe tP l a t f o rm IDs (num_platforms , p l a t f o rms , NULL) ;
6 /∗ . . . ∗/
7 f o r (i n t i =0; i<num_platforms ; i ++){
8 /∗ . . . ∗/
9 c l G e tP l a t f o rm I n f o (p l a t f o rm s [i] , CL_PLATFORM_VENDOR, . . .) ;
10 /∗ . . . ∗/
11 }

14 / 45OpenCL: Programming Heterogeneous Architectures

Introduction OpenCL Basic Management Writing Kernels BigDFT Conclusions and perspectives

Device Selection

Several device from the same vendor is also common : one device
for the screen and one device for computations

Get Devices

1 #i n c l u d e <CL/ c l . h>
2 c l_u i n t num_devices ;
3 c lGe tDev i c e ID s (p l a t fo rm , CL_DEVICE_TYPE_ALL, NULL , NULL , &num_devices) ;
4 c l_dev i c e_ i d ∗ d e v i c e s = ma l l o c (s i z e o f (c l_dev i c e_ i d) ∗ num_devices) ;
5 c lGe tDev i c e ID s (p l a t fo rm , CL_DEVICE_TYPE_ALL, num_devices , d e v i c e s , NULL) ;
6 /∗ . . . ∗/
7 f o r (i n t i =0; i<num_devices ; i ++){
8 /∗ . . . ∗/
9 c l G e tD e v i c e I n f o (d e v i c e s [i] , CL_DEVICE_NAME , . . .) ;
10 /∗ . . . ∗/
11 }

15 / 45OpenCL: Programming Heterogeneous Architectures

Introduction OpenCL Basic Management Writing Kernels BigDFT Conclusions and perspectives

Context Creation

Context gather devices from the same platform. Those devices will
be able to share resources.

Create Context

1 c l_ c o n t e x t_p r o p e r t i e s p r o p e r t i e s [] =
2 { CL_CONTEXT_PLATFORM, (c l_ c o n t e x t_p r o p e r t i e s) p la t fo rm_id , 0 } ;
3 c l_dev i c e_ i d d e v i c e s [] = {device_id_1 , device_id_2 } ;
4 c l_con t e x t con t e x t =
5 c lC r e a t eCon t e x t (p r o p e r t i e s , 2 , d e v i c e s , NULL , NULL , NULL) ;

A shortcut exists, skipping device selection :

Create Context from Type

1 c l_ c o n t e x t_p r o p e r t i e s p r o p e r t i e s [] =
2 { CL_CONTEXT_PLATFORM, (c l_ c o n t e x t_p r o p e r t i e s) p la t fo rm_id , 0 } ;
3 c l_con t e x t con t e x t =
4 c lCreateContextFromType (p r o p e r t i e s , CL_DEVICE_TYPE_GPU , NULL , NULL , NULL) ;

16 / 45OpenCL: Programming Heterogeneous Architectures

Introduction OpenCL Basic Management Writing Kernels BigDFT Conclusions and perspectives

Building Program from Source

Once the context is created, the program is to be built (or loaded
from binary).

Building Program

1 /∗ s t r i n g s i s an a r r a y o f s t r i ng_coun t NULL te rm ina t ed s t r i n g s ∗/
2 c l_program program =
3 c lCreateProgramWithSource (contex t , s t r i ng_count , s t r i n g s , NULL , NULL) ;
4 /∗ i f d e v i c e_ l i s t i s NULL , program i s b u i l t
5 ∗ f o r a l l a v a i l a b l e d e v i c e s i n the con t e x t ∗/
6 c lBu i l dP rog ram (program , num_devices , d e v i c e_ l i s t , op t i on s , NULL , NULL) ;
7 c l_ k e r n e l k e r n e l = c l C r e a t eK e r n e l (program , "kernel_name" , NULL) ;

Kernels are extracted from the built program using their name.

17 / 45OpenCL: Programming Heterogeneous Architectures

Introduction OpenCL Basic Management Writing Kernels BigDFT Conclusions and perspectives

Creating Command Queues

A command queue is used to send commands to a device. They
have to be associated with a device.

Creating Command Queues

1 cl_command_queue queue =
2 clCreateCommandQueue (contex t , d e v i c e s [chosen_dev ice] , 0 , NULL) ;

Options can be speci�ed instead of 0,
CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE
allows for out of order execution for instance.

18 / 45OpenCL: Programming Heterogeneous Architectures

Introduction OpenCL Basic Management Writing Kernels BigDFT Conclusions and perspectives

Using OpenCL

Using OpenCL is (hopefully) easier than setting it up.

Create buffers to

store data on devices

Send data to devices

using command queues

Send commands to devices

using command queues

Get data from devices

using command queues

19 / 45OpenCL: Programming Heterogeneous Architectures

Introduction OpenCL Basic Management Writing Kernels BigDFT Conclusions and perspectives

Bu�er Creation

In OpenCL bu�ers creation and deletion are explicitly managed. As
can be noted bu�ers are tied to a context and not a particular
command queue. The implementation is free to transfer bu�ers
from devices to host memory or to another device.

Creating Simple Bu�ers

1 cl_mem r e ad_bu f f e r =
2 c l C r e a t eB u f f e r (contex t , CL_MEM_READ_ONLY, bu f f e r_ s i z e , NULL , NULL) ;
3 cl_mem wr i t e_bu f f e r =
4 c l C r e a t eB u f f e r (contex t , CL_MEM_WRITE_ONLY, bu f f e r_ s i z e , NULL , NULL) ;

20 / 45OpenCL: Programming Heterogeneous Architectures

Introduction OpenCL Basic Management Writing Kernels BigDFT Conclusions and perspectives

Pinned Bu�er Creation

Pinned bu�er creation can o�er premium performances. Here is a
code sample that can be used on NVIDIA devices. The �nals
pointers obtained can be used to transfer data between the host
and the device.

Creating Pinned Simple Bu�ers

1 cl_mem p inned_read_buf fe r =
2 c l C r e a t eB u f f e r (contex t , CL_MEM_ALLOC_HOST_PTR | CL_MEM_READ_ONLY,
3 bu f f e r_ s i z e , NULL , NULL) ;
4 cl_mem p inned_wr i t e_bu f f e r =
5 c l C r e a t eB u f f e r (contex t , CL_MEM_ALLOC_HOST_PTR | CL_MEM_WRITE_ONLY,
6 bu f f e r_ s i z e , NULL , NULL) ;
7 un s i g n ed cha r ∗data_in =
8 c lEnqueueMapBuf fer (queue , p inned_read_buf fe r , CL_TRUE, CL_MAP_WRITE, 0 ,
9 bu f f e r_ s i z e , 0 , NULL , NULL , NULL) ;
10 un s i g n ed cha r ∗data_out =
11 c lEnqueueMapBuf fer (queue , p inned_wr i t e_buf f e r , CL_TRUE, CL_MAP_READ, 0 ,
12 bu f f e r_ s i z e , 0 , NULL , NULL , NULL) ;

21 / 45OpenCL: Programming Heterogeneous Architectures

Introduction OpenCL Basic Management Writing Kernels BigDFT Conclusions and perspectives

Transferring Data

The implementation is free to move bu�ers in memory. But
nonetheless, memory is often kept on the device associated to the
command queue used to transfer the data.

Data Transfer

1 c lEnqueueWr i t eBu f f e r (queue , r ead_buf f e r , CL_TRUE, 0 ,
2 bu f f e r_ s i z e , data_in , 0 , NULL , NULL) ;
3 /∗ Pro c e s s i n g tha t r e ad s r e ad_bu f f e r and w r i t e s w r i t e_bu f f e r ∗/
4 /∗ . . . ∗/
5 c lEnqueueReadBuf f e r (queue , w r i t e_bu f f e r , CL_TRUE, 0 ,
6 bu f f e r_ s i z e , data_out , 0 , NULL , NULL) ;

22 / 45OpenCL: Programming Heterogeneous Architectures

Introduction OpenCL Basic Management Writing Kernels BigDFT Conclusions and perspectives

Performing Calculations

Once data is transfered, kernels are used to perform calculations.

Kernel Usage

1 /∗ Place k e r n e l pa ramete r s i n the k e r n e l s t r u c t u r e . ∗/
2 c l S e tKe r n e lA r g (k e r n e l , 0 , s i z e o f (da ta_s i z e) , (v o i d ∗)&data_s i z e) ;
3 c l S e tKe r n e lA r g (k e r n e l , 1 , s i z e o f (r e ad_bu f f e r) , (v o i d ∗)& read_bu f f e r) ;
4 c l S e tKe r n e lA r g (k e r n e l , 2 , s i z e o f (w r i t e_bu f f e r) , (v o i d ∗)&w r i t e_bu f f e r) ;
5 /∗ Enqueue a 1 d imen s i o n a l k e r n e l w i th a l o c a l s i z e o f 32 ∗/
6 s i z e_ t l o c a lWo rkS i z e [] = { 32 } ;
7 s i z e_ t g l oba lWorkS i z e [] = { shrRoundUp (32 , da ta_s i z e) } ;
8 clEnqueueNDRangeKernel (queue , k e r n e l , 1 , NULL ,
9 g loba lWorkS i ze , l o ca lWorkS i z e , 0 , NULL , NULL) ;

23 / 45OpenCL: Programming Heterogeneous Architectures

Introduction OpenCL Basic Management Writing Kernels BigDFT Conclusions and perspectives

Event Management

Almost all functions presented end with :

1 . . . , 0 , NULL , NULL) ;

These 3 arguments are used for event management, and thus
asynchronous queue handling. Functions can wait for a number of
events, and can generate 1 event.

1 event_t e v e n t_ l i s t [] = { event1 , event2 } ;
2 event_t even t ;
3 c lEnqueueReadBuf f e r (queue , w r i t e_bu f f e r , CL_FALSE , 0 ,
4 bu f f e r_ s i z e , data_out , 2 , e v e n t_ l i s t , &even t) ;

Previous bu�er read waits for 2 events and generate a third that
will happen when the read is completed.

24 / 45OpenCL: Programming Heterogeneous Architectures

Introduction OpenCL Basic Management Writing Kernels BigDFT Conclusions and perspectives

Release Resources

OpenCL uses reference counts to manage memory. In order to exit
cleanly from an OpenCL program all allocated resources have to be
freed :

bu�ers (clReleaseMemObject)

events (clReleaseEvent)

kernel (clReleasekernel)

programs (clReleaseProgram)

queues (clReleaseCommandQueue)

context (clReleaseContext)

etc...

25 / 45OpenCL: Programming Heterogeneous Architectures

Introduction OpenCL Basic Management Writing Kernels BigDFT Conclusions and perspectives

Writing Kernels

26 / 45OpenCL: Programming Heterogeneous Architectures

Introduction OpenCL Basic Management Writing Kernels BigDFT Conclusions and perspectives

Recall : OpenCL Memory Model

4 di�erent memory space de�ned on an OpenCL device :

Global memory :
corresponds to the device
RAM, input data are
stored there.

Constant memory :
cached global memory.

Local memory : high
speed memory shared
among work items of a
compute unit.

Private memory :
registers of a work item.

27 / 45OpenCL: Programming Heterogeneous Architectures

Introduction OpenCL Basic Management Writing Kernels BigDFT Conclusions and perspectives

OpenCL Language : a Subset of C

Kernels are written using a C-like language

Recursion is prohibited

Helper functions are de�ned

Barriers

Work item indexes

Atomic operations

Vector operations

New keywords :

__kernel

__global, __local, __constant, __private

__read_only, __write_only, __read_write

28 / 45OpenCL: Programming Heterogeneous Architectures

Introduction OpenCL Basic Management Writing Kernels BigDFT Conclusions and perspectives

Example : Unidimensional Convolutions

Input

N` N`

Ne

Ne

n

N

(0,0)

(1,0)

(0,1)

(i,j)

Output

N`

Ne

(0,0) (1,0)

(0,1)

(i,j)

One unidimensional convolution with transposition, simple but not
too much. Real world code used in BigDFT an electronic structure
calculation program.

29 / 45OpenCL: Programming Heterogeneous Architectures

Introduction OpenCL Basic Management Writing Kernels BigDFT Conclusions and perspectives

OpenCL memory management

Example using a 4*4 block processing a �lter of length 5.

0,0 1,0 2,0 3,0

0,1 1,1 2,1 3,1

1,20,2 2,2 3,2

0,3 1,3 2,3 3,3

0,0 1,0 2,0 3,0

0,1 1,1 2,1 3,1

1,20,2 2,2 3,2

0,3 1,3 2,3 3,3

1,1

3,3

0,0 0,1 0,2 0,3

1,3

2,3

1,2

2,2

3,2

2,1

3,13,0

2,0

1,0

1 work item processes one element of the �nal matrix.

30 / 45OpenCL: Programming Heterogeneous Architectures

Introduction OpenCL Basic Management Writing Kernels BigDFT Conclusions and perspectives

Bene�ts from this approach

3D convolutions can be expressed as a succession of 3 1D
convolution/transposition.

Memory access are coalesced while reading input matrix and writing
output matrix.

Bank con�icts are almost avoided by padding the bu�er to the
number of bank +1.

Maps easily to current architectures.

Extends to more complex convolutions found in BigDFT.

Almost every convolution in BigDFT have been ported, including
free boundary and semi-periodic boundary.

31 / 45OpenCL: Programming Heterogeneous Architectures

Introduction OpenCL Basic Management Writing Kernels BigDFT Conclusions and perspectives

Kernel Declaration

Kernel Declaration

1 /∗ Ac t i v a t e doub l e p r e c i s i o n suppo r t ∗/
2 #pragma OPENCL EXTENSION cl_khr_fp64 : e n ab l e
3 #d e f i n e FILT_W 16
4 #d e f i n e WG_S 16
5 __kernel v o i d
6 __attribute__ ((reqd_work_group_size (WG_S,WG_S, 1))
7 mag i c f i l t e r 1 dKe r n e l_d (u i n t n , u i n t ndat ,
8 __global c o n s t doub l e ∗ ps i ,
9 __global doub l e ∗out){
10 // padded l o c a l b u f f e r s i z e : 33∗16
11 __loca l doub l e tmp [WG_S∗(WG_S+FILT_W+1)] ;

Works on double precision �oats

Kernel expects work group size of 16 x 16

n and ndat are in __local memory

tmp1 is a storage bu�er in local memory, shared among work items

32 / 45OpenCL: Programming Heterogeneous Architectures

Introduction OpenCL Basic Management Writing Kernels BigDFT Conclusions and perspectives

Work with Indexes

Get Indexes and Load Data

1 // get our p o s i t i o n i n the l o c a l work group
2 c on s t s i z e_ t i g = get_g loba l_ id (0) ;
3 c on s t s i z e_ t j g = get_g loba l_ id (1) ;
4 // get our p o s i t i o n i n the r e s u l t mat r i x
5 c on s t s i z e_ t i = ge t_ loca l_ id (0) ;
6 c on s t s i z e_ t j = ge t_ loca l_ id (1) ;
7 // t r a n s p o s e i n d e x e s i n the work group i n o r d e r to read t r an s po s ed data
8 p t r d i f f _ t i g t = i g − i + j − FILT_W/2 ;
9 p t r d i f f _ t j g t = j g − j + i ;
10 // i f we a r e on the ou t s i d e , s e l e c t a bo rde r e l ement to load , wrapp ing around
11 //we w i l l be l o a d i n g 2 e l ement s each
12 i f (i g t < 0)
13 tmp [i ∗ (WG_S+FILT_W+1) + j] = p s i [j g t + (n + i g t) ∗ ndat] ;
14 e l s e
15 tmp [i ∗ (WG_S+FILT_W+1) + j] = p s i [j g t + i g t ∗ ndat] ;
16 i g t += FILT_W;
17 i f (i g t >= n)
18 tmp [i ∗ (WG_S+FILT_W+1) + j + FILT_W] = p s i [j g t + (i g t − n) ∗ ndat] ;
19 e l s e \n\
20 tmp [i ∗ (WG_S+FILT_W+1) + j + FILT_W] = p s i [j g t + i g t ∗ ndat] ;

33 / 45OpenCL: Programming Heterogeneous Architectures

Introduction OpenCL Basic Management Writing Kernels BigDFT Conclusions and perspectives

Compute Convolution and Write Output

Performing Computations

1 // i n i t i a l i z e r e s u l t
2 doub l e t t = 0 . 0 ;
3 // r e s t p o s i t i o n i n the b u f f e r to f i r s t e l ement i n v o l v e d i n the c o n v o l u t i o n
4 tmp += j2 ∗(WG_S+FILT_W+1) + i 2 ;
5 // wa i t f o r b u f f e r to be f u l l
6 b a r r i e r (CLK_LOCAL_MEM_FENCE) ;
7
8 // app l y f i l t e r
9 t t += ∗tmp++ ∗ FILT0 ;
10 t t += ∗tmp++ ∗ FILT1 ;
11 /∗ . . . ∗/
12 t t += ∗tmp++ ∗ FILT15 ;
13 // s t o r e the r e s u l t
14 out [(j g ∗n+i g)]= t t ;
15 } ;

34 / 45OpenCL: Programming Heterogeneous Architectures

Introduction OpenCL Basic Management Writing Kernels BigDFT Conclusions and perspectives

BigDFT OpenCL Port Evaluation

35 / 45OpenCL: Programming Heterogeneous Architectures

Introduction OpenCL Basic Management Writing Kernels BigDFT Conclusions and perspectives

Motivations

Part of BigDFT was already ported to GPU architectures using
CUDA, why a new port ?

Only part of the program was ported.

OpenCL can target several platforms while CUDA can't.

OpenCL is a standard, while CUDA is a vendor provided solution.

This time most of BigDFT is expected to run on GPU.

Code ported is relatively simple and well suited to GPU, thus the
performance loss is hoped to be minimal.

36 / 45OpenCL: Programming Heterogeneous Architectures

Introduction OpenCL Basic Management Writing Kernels BigDFT Conclusions and perspectives

Objectives

Most of BigDFT operations can be expressed as unidimensional
convolutions.

There are several dozens convolutions to implement.

Convolutions of BigDFT share common traits.

Objectives

Find a common parallelization technique �tting most convolutions.

Be as e�cient as CUDA.

37 / 45OpenCL: Programming Heterogeneous Architectures

Introduction OpenCL Basic Management Writing Kernels BigDFT Conclusions and perspectives

Test System Setup

GPU 2 :

Tesla C2070 (Fermi)

6 GB of RAM

Driver version : 260.14

GPU 2 :

Radeon HD6970

2 GB of RAM

Driver version : 11.6

38 / 45OpenCL: Programming Heterogeneous Architectures

Introduction OpenCL Basic Management Writing Kernels BigDFT Conclusions and perspectives

Test System Setup

Host :

Lenovo D20

1 Xeon 5550 @ 2.83 GHz (4 Nehalem cores)

8 GB of RAM

Linux 2.6.38-11 x86_64

icc 11.1

39 / 45OpenCL: Programming Heterogeneous Architectures

Introduction OpenCL Basic Management Writing Kernels BigDFT Conclusions and perspectives

Comparison CPU,Fermi,HD6970

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

M
agicfilter

M
agicfilter_reverse

M
agicfilter_grow

M
agicfilter_shrink

K
inetic

K
inetic_k

A
nalysis

S
ynthesis

S
ynthesis_grow

A
nalysis_shrink

U
ncom

press

C
om

press

G
F

LO
P

S

Kernels

Performances of CPU vs NVIDIA vs AMD

CPU
NVIDIA

AMD

40 / 45OpenCL: Programming Heterogeneous Architectures

Introduction OpenCL Basic Management Writing Kernels BigDFT Conclusions and perspectives

Comparison CPU,Fermi,HD6970

 0

 10

 20

 30

 40

 50

 60

 70

M
agicfilter

M
agicfilter_reverse

M
agicfilter_grow

M
agicfilter_shrink

K
inetic

K
inetic_k

A
nalysis

S
ynthesis

S
ynthesis_grow

A
nalysis_shrink

U
ncom

press

C
om

press

R
at

io
 to

 C
P

U

Kernels

Performances of CPU vs NVIDIA vs AMD

CPU
NVIDIA

AMD

40 / 45OpenCL: Programming Heterogeneous Architectures

Introduction OpenCL Basic Management Writing Kernels BigDFT Conclusions and perspectives

Comparison CUDA, OpenCL, CPU

 0

 20

 40

 60

 80

 100

C
PU

-m
kl

C
PU

-m
kl-m

pi

C
U
D
A

C
U
D
A-m

kl

O
C
L-cublas

O
C
L-m

kl

C
U
D
A-m

pi

C
U
D
A-m

kl-m
pi

O
C
L-cublas-m

pi

O
C
L-m

kl-m
pi

 0

 2

 4

 6

 8

 10

P
e
rc

e
n
t

S
p
e
e

d
u

p

Badiane, X5550 + Fermi C2070 , ZnO 64 at.: CPU vs. Hybrid

Comms
LinAlg
Conv
CPU
Other
Speedup

41 / 45OpenCL: Programming Heterogeneous Architectures

Introduction OpenCL Basic Management Writing Kernels BigDFT Conclusions and perspectives

Hybrid ATI + NVIDIA

Tesla C2070 + Radeon HD 6970

MPI+NVIDIA/AMD Execution Time (s) Speedup

1 6020 1

4 1660 3.6

1 + NVIDIA 300 20

4 + NVIDIA 160 38

1 + AMD 347 17

4 + AMD 197 30

(4 + NV) + (4 + AMD) 109 55

Table: Performance results for di�erent con�guration of BigDFT, using
MPI + GPUs

42 / 45OpenCL: Programming Heterogeneous Architectures

Introduction OpenCL Basic Management Writing Kernels BigDFT Conclusions and perspectives

Conclusions

OpenCL

OpenCL proved easy to use.

Performance is on-par with previous CUDA implementation.

Kernels have been shown to run on other architectures : ATI and
CPU.

BigDFT

Full port of BigDFT convolutions on OpenCL.

Part of the code was rewritten during this work.

Complexity reduced compared to the CUDA support.

43 / 45OpenCL: Programming Heterogeneous Architectures

Introduction OpenCL Basic Management Writing Kernels BigDFT Conclusions and perspectives

Perspectives

OpenCL

Some OpenCL implementations are still recent and buggy.

Best way to do multi-GPU, GPU+OpenCL CPU?

Optimizing kernels for multiple devices ?

Automated kernel generation.

44 / 45OpenCL: Programming Heterogeneous Architectures

Introduction OpenCL Basic Management Writing Kernels BigDFT Conclusions and perspectives

Questions ?

Thanks for your attention.

45 / 45OpenCL: Programming Heterogeneous Architectures

	Introduction
	Context
	General problematic

	OpenCL: a Standard for Parallel Computing
	OpenCL Architecture Model
	OpenCL Device Model

	Life and Death of OpenCL in a Program
	Initialization
	Using OpenCL
	Event Management
	Release Resources

	Writing Kernels
	OpenCL Language
	Porting Unidimensional Convolutions to OpenCL

	BigDFT
	Motivations and objectives
	Performances Validation

	Conclusions and perspectives

